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Abstract

In the previous work [J. Geom. Phys. 39 (2001) 50], the closed loop solitons in a plane, i.e.,
loops whose curvatures obey the modified Korteweg–de Vries equations, were investigated for the
case related to algebraic curves with genera 1 and 2. This paper is a generalization of the previous
paper to those of hyperelliptic curves with general genera. It was proved that the tangential angle
of loop soliton is expressed by the Weierstrass hyperelliptic al-function for a given hyperelliptic
curvey2 = f (x) with genusg.
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1. Introduction

This paper is on loop solitons related to hyperelliptic curves with higher genera as an
extension of the previous report[23].

In [20], a problem of a quantized elastica (ideal thin elastic curve), or statistical mechanics
of elasticas, was proposed, which is a model of a large polymer in a plane such as DNA
at finite temperature. When a position of the elastica in a complex planeC is denoted by
Z : S1 ↪→ C, the partition function of elastica is given by

Z[β] :=
∫

DZexp(−βE[Z]), (1.1)
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whereβ is the inverse of temperature,DZ a certain functional measure andE[Z] the
Euler–Bernoulli functional energy which is given by

E[Z] :=
∮

ds k(s)2 (1.2)

for the arclengths, i.e., induced metric of the curve and its curvaturek.
As shown in[20–22], the partition function is completely determined by the orbits

of the modified Korteweg–de Vries (MKdV) hierarchical equations. As a curve
obeying the MKdV equation is known as a loop soliton due to[12,16], the quantized
elastica problem is a realization of the loop solitons. It is worthwhile noting that even
though the soliton theory is studied in field of physics, there are not so many exam-
ples that soliton equation is connected with a physical model including its multi-soliton
solutions.

In this paper, we will consider hyperelliptic solutions of the loop solitons or excited
states of a quantized elastica.Theorem 3.2is our main theorem of this paper. There we
give explicit solutions of closed loop solitons in a plane related to hyperelliptic curves with
general genera.

We will base on the result of[25]; there we show hyperelliptic solutions of the MKdV
equation in terms of the theories of the hyperelliptic functions which were developed in
the 19th century[2–4,9,14]and are recently re-evaluated[7,8,23,24]. Following the idea
mentioned in the discussion in[23], we extend the results in[23] to the case of general
genus in terms of Weierstrass’s hyperelliptic al-function[3, p. 34; 31].

As the elastica problem has a deep history[9,17,29,30], I believe that one of its reasons
is its naturalness. In the derivations of the solutions, it turns out that the elastica problem is
very natural even from a mathematical viewpoint. InRemark 3.3, we will give comments
on its naturalness.

Further as mentioned in[19], the elastica problem is closely related to automorphic
function theory even though the solutions are constructed in abelian variety. In fact the
Euler–Bernoulli energy functional can be expressed by the Schwarz derivative

E[Z] =
∮

ds{Z, s}SD. (1.3)

In Section 4, we comment on its relation to automorphic functions.

2. Differentials of a hyperelliptic curve

In this section, we will review the hyperelliptic functions following[2–4,8,27]without
explanations and proofs. We denote the set of complex number byC and the set of integers
byZ.

Convention 2.1. We deal with a hyperelliptic curveXg of genus g(g > 0) given by the
affine equation

y2 = f (x) = λ2g+1x
2g+1 + λ2gx

2g + · · · + λ2x
2 + λ1x + λ0 = P(x)Q(x), (2.1)
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where

f (x)= (x − b1)(x − b2) · · · (x − b2g)(x − b2g+1),

Q(x)= (x − c1)(x − c2) · · · (x − cg)(x − c),
P (x)= (x − a1)(x − a2) · · · (x − ag), (2.2)

λ2g+1 ≡ 1, andλj ’s, aj ’s, bj ’s, cj ’s and c are complex values.

Definition 2.2 ([2,3,7,8,27]). For a point(xi, yi) ∈ Xg, we define the following quantities:

(1) Let us denote the homology of a hyperelliptic curveXg by

H1(Xg,Z) = g⊕
j=1
Zαj ⊕ g⊕

j=1
Zβj , (2.3)

where these intersections are given as [αi, αj ] = 0 [βi, βj ] = 0 and [αi, βj ] = δi,j .
(2) The unnormalized differentials of the first kind are defined by

du(i)1 := dxi
2y
,

du(i)2 := xi dxi
2y

,

...

du(i)g := x
g−1
i dxi

2y
.

(2.4)

(3) The unnormalized period matrices are defined by

ω′ :=

(∫

αj

du(a)i

)
ij


 , ω′′ :=


(∫

βj

du(a)i

)
ij


 , ω :=

[
ω′
ω′′
]
. (2.5)

(4) The normalized period matrices are given by

t [ ω̂1 · · · ω̂g ] := ω′−1t [ du(i)1 · · · du(i)g ],

τ := ω′−1ω′′, ω̂ :=
[

1g

τ

]
. (2.6)

(5) The unnormalized differentials of the second kind are defined by

dũ(i)1 := x
g
i dxi
2yi

,

dũ(i)2 := x
g+1
i dxi

2yi
,

...

dũ(i)g := x
2g−1
i dxi

2yi
,

(2.7)
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and dr(i) := (dr(i)1 ,dr
(i)
2 , . . . ,dr

(i)
g ),

(dr(i)) := Λ
(

du(i)

dũ(i)

)
, (2.8)

whereΛ is 2g × g matrix defined by

Λ =




0 λ3 2λ4 3λ5 · · · (g − 1)λg+1 gλg+2 (g + 1)λg+3 · · · (2g − 3)λ2g−1 (2g − 2)λ2g (2g − 1)λ2g+1

0 λ5 2λ6 · · · (g − 2)λg+2 (g − 1)λg+3 gλg+4 · · · (2g − 4)λ2g (2g − 3)λ2g+1 0

0 λ7 · · · (g − 3)λg+3 (g − 2)λg+4 (g − 1)λg+5 · · · (2g − 5)λ2g+1 0

. . .
.
.
.

.

.

.

.

.

. · · · 0

0 λ2g−2 2λ2g−1 3λ2g+1

0 λ2g+1 0 0



.

(2.9)

(6) The complete hyperelliptic integral matrices of the second kind are defined by

η′ :=

(∫

αj

dr(a)i

)
ij


 , η′′ :=


(∫

βj

dr(a)i

)
ij


 , ω :=

[
ω′

ω′′

]
. (2.10)

(7) By defining the Abel map forgth symmetric product of the curveXg,

u : Symg(Xg)→ C
g,(

uk((Qi)i=1,...,g) :=
g∑
i=1

∫ Qi

∞
du(i)k , k = 1, . . . , g

)
, (2.11)

the Jacobi varietyJg are defined as complex torus

Jg := C
g

�
. (2.12)

Here� is a lattice generated byω.

Definition 2.3. The coordinate inCg for points{Qi ≡ (xi, yi)|i = 1, . . . , g} of the curve
y2 = f (x) is given by

uj :=
g∑
i=1

∫ (xi ,yi )

∞
du(i)j , duj =

g∑
i=1

du(i)j . (2.13)

(1) Using the coordinateuj , σ functions, which is a holomorphic function overCg, is
defined by[3, pp. 336 and 350; 7,14]

σ(u) = σ(u;Xg) := γ exp

(
−1

2
t uη′ω′−1u

)
ϑ

[
δ′′

δ′

]
(ω′−1u; τ), (2.14)
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whereγ is a certain constant factor

ϑ

[
a

b

]
(z; τ) :=

∑
n∈Zg

exp

[
2π

√−1

{
1

2
t (n+a)τ(n+a)+t (n+ a)(z+ b)

}]

(2.15)

for g-dimensional vectorsa andb, and

δ′ := t

[
g

2

g − 1

2
· · · 1

2

]
, δ′′ := t

[
1

2
· · · 1

2

]
. (2.16)

(2) Hyperelliptic℘-function is defined by[2,3,14]

℘ij (u) := − ∂2

∂ui∂uj
logσ(u), (2.17)

and hyperellipticζi function is defined by

ζi(u) := ∂

∂uj
logσ(u). (2.18)

(3) Weierstrass hyperelliptic alr -function is defined by[3, p. 340; 31]

alr (u) := γ ′√F(br), (2.19)

whereγ ′ is a certain constant

F(x) := (x − x1) · · · (x − xg) = γgxg + γg−1x
g−1 + · · · + γ0, (2.20)

whereγg ≡ 1

Proposition 2.4.

(1) ℘gi (i = 1, . . . , g) is elementary symmetric functions of{x1, x2, . . . , xg} [2–4,7], i.e.

F(x) = xg −
g∑
i=1

℘gix
i−1. (2.21)

(2) ζj (u) is expressed by[8, pp. 33–35]

−ζi(u) =
g∑
k=1

∫ xi

∞
dri − 1

2
detAg−i , (2.22)
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where

An+1 :=




e1 −1

2e2 −e1 1 0

...
...

...
. . .

(n− 2)en−2 −en−3 en−4 · · · ±1

(n− 1)en−1 −en−2 en−3 · · · ±e1 ∓1

nen −en−1 en−2 · · · ±e2 ∓e1 ±1

(n+ 1)dn −dn−1 dn−2 · · · ±d2 ∓d1 ±1




, (2.23)

andei := ℘g,g+1−i anddi := ℘g,g,g+1−i := ∂℘g,g+1−i/∂ug.

As we show later,(2.22)is a very important relation in our quantized elastica, which was
found by Buchstaber et al.[8] (Appendix A); according to Buchstaber et al.[8], Baker[2]
gave a wrong relation. We note thatF(x) is a generator of the elementary symmetric func-
tions and the matrixAn (2.23)contains the matrix of the Newton formula as its minor matrix
[18]. In fact in the derivation of(2.23), An plays the role which connects the elementary
and power sum symmetric functions.

Definition 2.5.

(1) A polynomial associated withF(x) is introduced by

πi(x) := F(x)

x − xi = χi,g−1x
g−1 + χi,g−2x

g−2 + · · · + χi,1 + χi,0, (2.24)

whereχi,g−1 ≡ 1,χi,g−2 = (x1 + · · · + xg)− xi , and so on.
(2) We will introduceg × g-matrices

W :=




χ1,0 χ1,1 · · · χ1,g−1

χ2,0 χ2,1 · · · χ2,g−1

...
...

. . .
...

χg,0 χg,1 · · · χg,g−1



, Y :=




y1

y2

. . .

yg



,

F ′ :=




F ′(x1)

F ′(x2)

. . .

F ′(xg)



, (2.25)

whereF ′(x) := dF(x)/dx.
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(3)

M :=




1

γg−1 1 0

γg−2 γg−1 1
...

...
...

. . .

γ1 γ2 · · · γg−1 1



, K :=




x
g−1
1 x

g−2
1 · · · 1

x
g−1
2 x

g−2
2 · · · 1

...
...

. . .
...

x
g−1
g x

g−2
g · · · 1


 .

(2.26)

(4) The coordinate inCg is introduced byu(r) := Pru, wherePr is defined by its inverse
matrix

P−1
r :=




1 gbr

(
g − 1

2

)
b2
r · · ·

(
g − 1

g − 1

)
b
g−1
r b

g−1
r

0 1 (g − 1)br · · ·
(
g − 1

g − 2

)
b
g−3
r b

g−2
r

...
...

...
. . .

...
...

0 0 0 · · · 1 br

0 0 0 · · · 0 1



. (2.27)

(5) For a polynomialg(X) = gnXn + · · · + g0, we introduce theDj operator

Dj =
n∑
i=j
giX

i−j . (2.28)

Lemma 2.6.

(1) The inverse matrix of W is given byW−1 = F−1V , where V is Vandermonde matrix

V =




1 1 · · · 1

x1 x2 · · · xg

x2
1 x2

2 · · · x2
g

...
...

...

x
g−1
1 x

g−1
2 · · · x

g−1
g



. (2.29)

(2) Let ∂ui := ∂/∂ui , ∂xi := ∂/∂xi and∂(r)ui := ∂/∂u(r)i ,

∂u1

∂u2

...

∂ug


 = 2YF ′−1W



∂x1

∂x2

...

∂xg


 ,




∂
(r)
u1

∂
(r)
u2

...

∂
(r)
ug


 = tP−1



∂u1

∂u2

...

∂ug


 . (2.30)
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(3) KM = W and

Wij = χi,j−1 = [Dj(F (X))]X=xi . (2.31)

Proof. Case (1) is obvious by using the properties of the Vandermonde matrix. In case
(2), we must pay attention the fixed parameters for the partial differential. By comparing
dxi and the chain relation of∂ui , we obtain the matrix representation(2.30) [25]. From the
relation(F (x)/(x − xi))(x − xi) = F(x), we have

χi,j = γj+1 + xiχi,j+1. (2.32)

Then we obtain the relation(2.31). �

We note that formulae(2.31) and (2.32)are very important to prove(2.23).

Proposition 2.7 ([8, p. 11]). The Legendre relation is given by
tω′η′′ − tω′′η′ = 2π

√−1Ig, (2.33)

whereIg is theg × g-unit matrix.

3. Loop solitons

In this section, we will deal with a real curve in a plane in the category of differential
geometry.

Let us consider a smooth immersion of a circleS1 into the two-dimensional Euclidean
spaceE2 ≈ C or E2 + {∞} ≈ CP 1. The immersed real curveC is characterized by the
affine coordinate(X1(s),X2(s)) around the origin. Heres is a parameter ofS1 and is, now,
chosen as the arclength so that ds2 = (dX1)2 + (dX2)2. We will also use the complex
expression

Z(s) := X1(s)+ √−1X2(s). (3.1)

Then by letting∂s := ∂/∂s, |∂sZ(s)| = 1 and the curvature ofC is given by

k(s) := 1√−1
∂s log∂sZ(s). (3.2)

As mentioned inSection 1, loop soliton is identified with a quantized elastica[20]. Thus
we will sometimes call itquantized elasticaor simplyelasticahereafter.

Definition 3.1.

(1) A one-parameter family of curves{Ct } for a real parametert ∈ R is called a loop
soliton, if its curvature obeys the MKdV equation, forq := k/2,

∂tq + 6q2∂sq + ∂3
s q = 0, (3.3)

where∂t := ∂/∂t .
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(2) The energy of elastica is given by

E[Z] :=
∮

ds k2, (3.4)

which can be expressed by the Schwarz derivative

E[Z] =
∮

ds{Z, s}SD, (3.5)

where

{Z, s}SD := ∂s
(
∂2
s Z

∂sZ

)
− 1

2

(
∂2
s Z

∂sZ

)2

. (3.6)

Here we will give our main theorem as follows.

Theorem 3.2. Let the configuration of the x-components(x1, . . . , xg) of the affine coordi-
nates of the hyperelliptic curvesSymg(Xg) satisfy

|F(br)| = r0, (3.7)

wherer0 is a positive number. For such(x1, y1), . . . , (xg, yg), we haveu := u((x1, y1), . . . ,

(xg, yg)) due to(2.11).

(1) By settings ≡ ug/r0 andt ≡ ug−1 + (λ2g−1 + br)ug,
∂ugZ

(r) := F(br) or |∂sZ(r)| = 1, (3.8)

completely characterizes the loop soliton.
(2) The shape of elastica is given by

Z(r) = 1

r0

(
b
g
r ug +

g∑
i=1

birζi−1

)
. (3.9)

Remark 3.3.

(1) If one prefers more proper expression for the branch point(br ,0), he may useu(r)j in
(2.27) and then find similar results. As the expression is essentially the same as the
above one due to(2.30), we will investigate the above one.

(2) The condition(3.7) is essential. Due to the condition, any configurations ofu, the
tangential angleφ = log(∂ugZ)/

√−1 does not contain imaginary part. Hence the
arclength locally does not change[19–22]. As Goldstein and Petrich[11] showed that
the isometric deformation of space curve in a plane gives the MKdV equation, this
condition and [∂ug , ∂ui ] = 0 recover the MKdV equation in general.

(3) The tangential vector,∂ugZ ≡ F(br) ∝ al2r , consists only ofxi ’s, which can be regarded
as a twofold coordinate of Symg(CP 1). Eachxi ∈ CP 1 appears when we construct
the hyperelliptic curveXg using twoCP 1 with g + 1 cuts.
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(4) Due to the configuration of(3.7), there is a trivial action of theU(1)-group, which
exhibits the translation symmetry of the elastica. When we begin with this symmetry
and isometric deformation, we reproduces the MKdV hierarchy[20,21].

(5) The condition(3.7)should be regarded as a reality condition. Elastica problem is a real
analytic problem. In the primitive sense, the complex analysis is more complex than
the real analysis but from deeper viewpoint, their standpoints are reversed. In fact, due
to the condition, we must investigate all possible contours in the complex curveXg.
In other words, from the point of view of real analysis, as long as we have insufficient
knowledge of the condition, it is not the end of the study of the quantized elastica
problem. I suppose that this difficulty is similar to that of real analytic Eisenstein series
[28].

(6) The condition(3.7)is satisfied if allxi ’s are in a circle centralizing atbr . Then symmetric
configuration ofx1, . . . , xg determines a point of a shape of the loop soliton. In other
words, the dynamics of the elastica is translated to symmetric system ofg-particles in
S1. Dynamics of symmetric particles in a circle might be familiar with researches of
quantum integrable system[15].

When we consider the discrete configurations ofx’s, they give the discrete time de-
velopment of the piecewise linear curves. This must be related to the discrete integrable
system.

From the definition,Theorem 3.2can be proved by the following proposition, which was
shown in[25]. We will give a sketch of the proof of[25], whose techniques essentially
appeared in[4].

Proposition 3.4. By letting

µ(r) := 1

2
∂ugφ

(r), φ(r)(u) := 1√−1
logF(br), (3.10)

µ(r) obeys the modified KdV equation

(∂ug−1 − (λ2g + br)∂ug )µ(r) − 6µ(r)
2
∂ugµ

(r) + ∂3
ug
µ(r) = 0. (3.11)

Proof. This is proved in[20]. We will give a sketch of the proof. From the definition, we
have

∂

∂ug
logF(br) =

g∑
i=1

2yi
F ′(xi)(xi − br) ,

∂

∂ug−1
logF(br) =

g∑
i=1

2yiχi,g−1

F ′(xi)(xi − br) . (3.12)

Let ∂X0
g is boundary whenXg is embedded in a upper-half planeH. By estimation of∮
∂X0

g

f (x)

(x − br)F (x)2 dx = 0, (3.13)
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and counting its residues, we obtain

g∑
k=1

1

F ′(xk)

[
∂

∂x

(
f (x)

(x − br)F 2(x)

)]
x=xk

= λ2g + br + 2℘gg. (3.14)

Further, we have

(∑
k

yk

(x − xk)F ′(xk)

)2

=
∑
k,l,k �≡l

2ykyl
(x − xk)(xk − xl)F ′(xk)F ′(xl)

+
∑
k

y2
k

(x − xk)2F ′(xk)2
. (3.15)

Using them, we have the relation. �

We note that the formal power series

µ(r) ≡ 1

2
√−1

∂

∂ug
logF(br) = 1√−1

g∑
i=1

yi

F ′(xi)(xi − br)

= 1√−1

∞∑
j=1

g∑
i=1

yi

F ′(xi)br
x
j
i

b
j
r

(3.16)

is resemble to the generator of the power sum symmetric functions[18].
As we provedProposition 3.4, we give two corollaries, which are shown by direct com-

putations.Corollary 3.5gives local properties of the elastica andCorollary 3.6is associated
with its global properties.

Corollary 3.5.

(1) The shape of elastica is given by

Z(r) = 1

r0


bgr ug +

g∑
i,j=1

bir

∫ (xj ,yj )

dri−1 + 1

2

g∑
i,j=1

bir detAg−i


 . (3.17)

(2) The Schwarz derivative of Z with respect toug,

{Z(r), ug}SD = 4℘gg + 2λ2g + 2br . (3.18)

(3) The root square of the tangential vector
√
∂ugZ

(r) ≡ alr/γ ′ is a solution of the Dirac

equation or Frenet–Serret equation[19]

(
∂ug µ(r)

µ(r) −∂ug

)
√
∂ugZ

(r)√
−∂ugZ(r)


 = 0. (3.19)
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Here we comment on(3.18) and (3.19). First we note that the solution of the Dirac equation
consists of al-functions due to(2.19) and (3.8). Second it is noted that from the definitions
(3.6) and (3.10), and(3.18)agrees with the Miura transformation

µ(r)2 + √−1∂ugµ
(r) = 2℘gg + λ2g + br , (3.20)

because the left-hand side consists of the solutions of the MKdVequation (3.11)whereas
the right-hand side obeys the KdV equation[7,24]. Further it is obvious that(3.19)has the
same data as the Miura transformation(3.20)by operating the Dirac operator twice[25].
On the other hand,(3.19)can be expressed by(

−∂ug 0

0 ∂ug

)


√
∂ugZ

(r)√
−∂ugZ(r)


 =

(
0 µ(r)

µ(r) 0

)


√
∂ugZ

(r)√
−∂ugZ(r)


 . (3.21)

Here we can recognize that the left-hand side is an operation in analytic category while
right-hand side is an operation as an endmorphisms in a commutative algebra. This relation
is essential in the study ofD-module, due to the statements in[6, pp. 12–13].

Corollary 3.6.

(1) The winding number of elastica can be computed for a given path by the integration

w := 1

2π

∮
∂ugφ(ug)dug. (3.22)

(2) The closed condition of elastica∮
∂ugZ

(r) dug ≡ 0 (3.23)

consists of the conditions

b(r)
g

ωi +
g∑
i=1

b(r)
i

ηi−1 = 0, (3.24)

using the hyperelliptic integral(2.5) and (2.6).

(3) {Z(r), ug}SD dug = −4 dζg + 2(λ2g + br)dug. (3.25)

(4)
∮
βa

{Z(r), ug}SD dug = −4η′′
ag + 2(λ2g + br)ω′′

ag, (3.26)

∮
αa

{Z(r), ug}SD dug = −4η′
ag + 2(λ2g + br)ω′

ag. (3.27)

4. Discussion

As mentioned in[19], our problem is resemble to Poincaré, Klein and Schwarz theories
of the automorphic function over the half plane or the Poincaré disk.
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First the resemblance is obtained through the conformal field theory. SinceS1 is homo-
topically equivalent withC − {0}, most results of the conformal field theory are obtained
by the investigation of dynamics of functions overS1 in a Riemann sphereCP 1 [13]. The
situation in(3.7) is very resemble to that of the conformal field theory but is in the higher
genus Riemannian surface. However, we can also perform the Fourier transformation or
localization around the ramified point(br ,0). Then it should be noted that on the injective
maps

∂sZ
(r) : S1 → Xg, (4.1)

there are nontrivial actions of the fundamental group(3.23). By letting

Ln :=
∮
(2℘gg + λ2g + br)e2π

√−1nug/r0
dug
r0
, (4.2)

we have the relation of Virasoro algebra[5,19]

[Ln,Lm] = (n−m)Ln+m + δ0,n+mn(n2 − 1). (4.3)

Here we remark that in the conformal field theory, the surface obtained by means of the
Vertex operator acting a Riemannian sphere is called a Riemannian surface with genusg

but as in showed in[24], such a Riemannian surface, at least of the case of the hyperelliptic
curve, is very far from our Riemannian surfaces. The Riemannian surface obtained by the
Vertex operator from the Riemannian sphere is, in fact, topologically genusg surface but is
very special (semi-stable) degenerate curve; the theory over such a curve should be regarded
as a theory on Riemannian sphere[1]. Recently some of the physicists might regard that
topological aspect in field theory is the most important and they deal only with degenerate
curves. However, at least, in low-energy physics related to our lives, we need finer topology.
In fact, the shape of classical elastica, which was studied by Euler as a classical field theory
and is determined by curvature, leads us to very fruitful physics and mathematics. Further in
general, physical phenomena are not in a framework of complex analysis. Even though some
objects in the category of the complex analysis is classified by topological objects, it is not all
in physics. For example, Euler equation for complete fluid dynamics in three-dimensional
space cannot be expressed by complex analysis. Quantized elastica problem should also be
considered in the real analytic category as Euler did. Of course, topological aspect is still
important but, I believe, is not a goal for quantitative science.

Next I will comment on interesting relations, which also looks connected with the auto-
morphic functions.Z(r) is roughly equal toζ functions due to(3.9)whereas the incomplete
“energy integral”,∫ u

{Z(r), ug}SD dug, (4.4)

is also expressed by theζ functions. It implies that there is a similarity between the con-
figuration and energy of elasticas. Further the matrix(2.23)is essentially the same as the
Newton formula which connects the elementary and power sum symmetric functions. Thus
ζ (the configurations and energy from above view points) is essentially expressed by the
power sum symmetric function, while the main part ofµ, or a half curvature of elastica,
is the same as a generator of the power sum symmetric function due to(3.16) [18]. It is
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expected that there might be hidden symmetries. These facts might remind us of replicabil-
ity of automorphic function if they were related to automorphic functions[26]. In fact, for
the case of elliptic function(g = 1) case helping with the notations in[23] ((∂u℘ (u))2 =
4℘3 −g2℘+g3 = 4(℘− e1)(℘− e3)(℘− e4), ℘ (ωi) = ei), we have interesting formulae

∂uZ
(a)(u+ ωa) = 1

4{Z(a)(u), u}SD − 3
2e1, (4.5)

Z(a)(u)= lim
ε→0

∫ u

du
1

σ(ε)2

× exp

(
−1

2

∫ u

ε

∫ u′

0
[{Z(a)(u′′), u′′}SD − {Z(a)(u′′ − ωa), u′′}SD] du′′ du′

)

(4.6)

for a = 1,2,3. In the integrations, we should note the effects from the initial points.
Eqs. (4.5) and (4.6)can be extended to higher genus. For the case of(4.6), we can do by
using the relation alr functions andσ function[3].

Further from the point of view of theory of the symmetric function, one might wish to
regardxi as an eigenvalue of some matrix,X = diag(x1, x2, . . . , xg). The generator of the
elementary symmetric function is expressed by

F̃ (x) = det(X − xI), (4.7)

and that of the power symmetric function is expressed by

G̃(x) =
∞∑
n=1

tr(X n)xn. (4.8)

They are closely related to(2.20) and (3.16). As comparison with physics, some purposes in
mathematics are classifications and determination of the relations among classified objects.
The classification should be characterized by discrete quantities and these discrete quantities
should sometimes preserve when we take a certain limit. Thus it might be natural to consider
degenerate curves in a certain sense. The degenerate curvey2 = P(x)2x, which was dealt
with in [24] and is associated with the soliton solutions and algebra of vertex operators, is
also expressed byy2 − x(det(xI − P))2 = 0 by lettingP := diag(a1, a2, . . . , ag). These
matricesP andX for the degenerate curve are the same rank. Hence it is natural that one
consider a graded algebraA (Ag ⊂ Ag+1, A = ∪gAg) generated by generators(X̄ , P̄
and so on) such that there is aA-moduleMg satisfyingX̄Mg = XMg andP̄Mg = PMg.
If we regardMg as a representation of shape of elastica, we might able to deal with family
of elastica related to hyperelliptic curves with different genera. The Schwarz derivative,
which plays important roles in theory of automorphic functions[26] and is invariant for
PSL(2,C), naturally appears in our elastica problem[22]. Even though PSL(2,Z) is far
from our situation in this stage, I hope that our study might reveal some relations between
elastica problems and automorphic function theory[26], if exists[19].

Finally, we mention our future study. The quantized elastica in a plane was extended to
that inR3. There the nonlinear Schrödinger equation and complex MKdV equation play
the same role as the MKdV equation[21]. As the explicit function form of the finite type
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solution, the nonlinear Schrödinger equation was obtained in[10], this study might be
extended to that inR3.

5. Note added in proof

Recently I learned that in[32] Mumford investigated the (classical) elastica problem of
genus one from view point of applied mathematics and gave simple and deep expression of
the shape of elastica, which is related to this study and[23].
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Appendix A

As (2.22)was given only in improved version[8] of published version[7], we briefly
review its derivation here following[8]. There Buchstaber et al. started from a fundamen-
tal relation among the hyperelliptic sigma functions and incomplete integrals of the first,
second and third kinds. Then they used the operator(2.28), investigated of symmetry of an
intermediate equation and reached(2.22).

Thus let us follow their way. First we will give the fundamental formula in theσ function
theory[2,7]

log


σ

(∫ P
∞ du + u

)
σ
(∫ Q

∞ du + u′
)

σ
(∫ P

∞ du + u′
)
σ
(∫ Q

∞ du + u
)

 =

g∑
j=1

RP,Q
Pj ,Qj

, (A.1)

where

u =
g∑
j=1

∫ Pj

∞
du, u′ =

g∑
j=1

∫ Qj

∞
du, (A.2)

RP,Q
P′,Q′ ≡ RP′,Q′

P,Q =
∫ P

Q
du1

∫ P′

Q′
dr1 + · · · +

∫ P

Q
dug

∫ P′

Q′
drg + PP,A

Q,B, (A.3)

PP,Q
P′,Q′ :=

∫ P

Q
Ω(P′,Q′), Ω(P,Q) :=

(
y + yP

x − xP
− y + yQ

x − xQ

)
dx

2y
, (A.4)
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andPj (Qj ) is conjugate of Pj (Qj ) with respect to the symmetry of hyperelliptic curve
(x, y)→ (x,−y).

After letting all Qj to ∞, we derivative it inuj , we obtain

ζj

(∫ P

∞
du + u

)
− ζj

(∫ Q

∞
du + u

)
+
∫ P

Q
drj − ∂

∂uj

g∑
i=1

∫ Pi

∞
Ω(P,Q) = 0.

(A.5)

IntroducingR(z) = (z− x0)F (z) for P = (x0, y0) and Pj = (xj , yj ), (A.5) becomes

ζj

(∫ P

∞
du + u

)
+
∫ P

∞
drj +

g∑
i=0

∫ Pj

∞
drj

−1

2

g∑
i=0

yi

(
Dj(R

′(z))− jDj+1(R(z))

R′(z)

∣∣∣∣
z=xi

)

= ζj (u)+
g∑
i=1

∫ Pj

∞
drj − 1

2

g∑
k=1

1

yk

∂xk

∂uj

1

yi

yi − y∞
xi − x∞

− 1

2

g∑
i=1

yi

(
Dj(F

′(z))− jDj+1(F (z))

R′(z)

∣∣∣∣
z=xi

)
. (A.6)

Then noting the fact that the left-hand side is symmetrical inx0, x1, . . . , xg, while the
right-hand side is symmetrical inx1, x2, . . . , xg but does not depend onx0, (A.6) is reduced
to (2.22). (2.23)comes from the third term in the left-hand side of(A.6).
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